28110121
MA 633- Partition Theory - Lee. 33
ROGERS - RAMANUJAN IDENTITIES
The. 49 (i) $\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\left(q ; q_{n}\right.}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}$.
ii) $\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty} \text {. }}$

Euler's theorem: The number of partitions of an integer n into add parts equals the number of partitions of n into parts which differ by at least one,

$$
(-q ; q)_{\infty}=\sum_{n=0}^{\infty} \frac{q^{\frac{n(n+1)}{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

Consider $\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\sum_{n=0}^{\infty} \frac{q^{1+3+5+\cdots+2 n-1}}{(q ; q)_{n}}$
This is a generating function for the number of partitions of a positive integer whose parts differ by at least 2 .

L comes from $q^{n^{2}}$,
Similarly $\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)}$ is the gen. fin. of pains. of a positive integer into parts differing by at least 2, and with no l's.
$\left(\begin{array}{l}\text { Hint: } \\ \text { Write }\end{array}\right.$

$$
\left.n^{2}+n=2+4+6+\cdots+(2 n-2)+2 n .\right)
$$

Experimentally discovering the $1^{\text {sf }}$ Rogers - Ramanujan identity.

Goal: For all merlin,
Construct a set N 'sit.
$P(n \mid$ parts in $N)=p(n \mid$ parts differing by
(1) Start with $N=\phi$. at least 2). (*)
(2) Add 1 to N. So that $N=\{1\}$, and thus holds for $n=1$.
(3) 2 will not be added to N becaur 2 can be written as $1+1$
(4) 3 will not be addearts:
(5) 4 will be added to N, for, otherwise with the existing clements in N, we get only one partition of $4 \quad(4 \leq 1+1+1+1)$, $N=\{1,4\}$,
(6) 5 will mot be added to N.
(7) 6 will be added to N,

$$
N=\{1,4,6\}
$$

(8) 7 will mot be added to N
(9) 8 will not be added to N.
(10) q will be added to N.
(11) 10 will $=\{1,4,6,9\}$.
(12) 11 will be added to N.

$$
N=\{1,4,6,9,11\}
$$

Continuing like this, we will see that N consists of numbers $=1,4(\bmod 5)$.

This experimentally leads us to the $1^{\text {st }}$ Rogers - Ramanujan identity.

Proofs of the Rogers - Ramanujan identities due to G.N. Watson

Consider the following $8 \phi_{7}$ to $4 \phi_{3}$ transf, of Watson,

$$
\begin{aligned}
& 8 \phi_{7}\left[\begin{array}{l}
\left.a, q \sqrt{a},-q \sqrt{a}, b, c, d, e, q^{-N}, \frac{a^{2} q^{N+2}}{\sqrt{a}}, \sqrt{a}, \frac{a q}{b}, \frac{a q}{c}, \frac{a q}{d}, \frac{a q}{e}, a q^{N+1}, \frac{b c d e}{b c}\right] \\
= \\
\left(\frac { a q) _ { N } (\frac { a q } { d e }) _ { N } } { (\frac { a q } { d }) _ { N } (\frac { a q } { e }) _ { N } } 4 \phi _ { 3 } \left[\frac{a q}{b c}, d, e, q^{-N}\right.\right. \\
\frac{d e q-N}{a}, \frac{a q}{b}, \frac{a q}{c} ; q
\end{array}\right]
\end{aligned}
$$

We will use this to prove the following result:

The. 50 (Entry 7) Ch. 16, Ramanujan's

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(a)_{n}\left(\frac{d}{b}\right)_{n}\left(\frac{d}{c}\right)_{n}\left(\frac{d}{q}\right)_{n}\left(1-d q^{2 n-1}\right)\left(\frac{b c}{a}\right)^{n} q^{n(n-1)}}{(b)_{n}(c)_{n}\left(\frac{d}{a}\right)_{n}(q)_{n}\left(1-\frac{d}{q}\right)} \\
& =\frac{(a)_{\infty}(d)_{\infty}}{(b)_{\infty}(c)_{\infty}} \sum_{n=0}^{\infty} \frac{(b / a)_{n}(c / a)_{n}}{(d / a)_{n}(q)_{n}} a^{n} .
\end{aligned}
$$

Proof: We want to les $N \rightarrow \infty$ \& then $c \rightarrow \infty$ in the ${ }_{8} \phi_{7}$ transf of Watson.
Observe that

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{\left(q^{-N}\right)_{n} q^{N n}}{\left(a q^{N+1}\right)_{n}} & =\frac{(-1)^{n} q^{\frac{n(n-1)}{2}}}{1} \\
\text { using } & =(-1)^{n} q^{n(n-1) / 2}
\end{aligned}
$$

using

$$
\left(\omega q^{-N}\right)_{n}=(-\omega)^{n} q^{\frac{n(n-1)}{2}-n N}\left(\frac{q / \omega)_{N}}{(q / \omega)_{N-1}}-\right.
$$

[Proof of \circledast :

$$
\begin{aligned}
& \left(\omega q^{-N}\right)_{n}=\left(1-\frac{w}{q^{N}}\right)\left(1-\frac{w}{q^{N-1}}\right) \cdots\left(1-\frac{w}{q^{N-(n-1)}}\right) \\
& =\left(-\frac{w}{q^{N}}\right)\left(\frac{-w}{q^{N-1}}\right) \cdots\left(\frac{\left.-\frac{w}{N-(n-11}\right)}{q^{N}}\right) \\
& \times\left(1-\frac{q^{N}}{\omega}\right)\left(1-\frac{q^{N-1}}{w}\right) \cdots\left(1-\frac{q^{N-(n-1)}}{\omega}\right) \\
& =\frac{(-w)^{n}}{q^{N n-n(n-1)}} \frac{\left(\frac{q^{N-(n-1)}}{w}\right)_{n}\left(\frac{q}{w}\right)_{N-n}}{\left(\frac{q}{w}\right)_{N-n}}
\end{aligned}
$$

which proves *,

