$11 / 11 / 2021$
MA 633 -Theory of partitions - Lec. 39
By iteration,

$$
A_{n}(q)=q^{\frac{n(n+1)}{2}} A_{\infty}(q)
$$

Hence, $\varphi(z)=\sum_{n=-\infty}^{\infty} q^{\frac{n(n+1)}{2}} A_{0}(q) z^{n}$
Claim: $A_{0}(q)=\frac{1}{\substack{n=1}}$. $\left.1-q^{n}\right)$.
Proof of the claim:
Note that $\varphi(z):=\prod_{n=1}^{\infty}\left(1+z q^{n}\right)\left(1+z^{-1} q^{n-1}\right)$.
We first understand
how the constant term $z^{\circ} q^{N}$ arise. If arises exactly as many times as one gets the pairs of terms $q_{1}+a_{2}+\cdots+a_{m} z^{m}$
with $a_{1}>a_{2}>\cdots>a_{m} \geqslant 1$ \& $q^{b_{1}+b_{2}+\cdots+b_{m}} z^{-m}$, with $b_{1}>b_{2}>\ldots>b_{m} \geqslant 0$, and with added condition that

$$
\begin{aligned}
& \text { Dded condition that } \\
& a_{1}+a_{2}+\cdots+a_{m}+b_{1}+b_{2}+\ldots+b_{m}=N \text {. }
\end{aligned}
$$

In other words, each contribution to q^{N} in the constant term comes from each F-partition of N of the form

$$
\left(\begin{array}{cccc}
a_{1}-1 & a_{2}-1 & \cdots . a_{m}-1 \\
b_{1} & b_{2} & \cdots . & b_{m}
\end{array}\right)
$$

where $a_{1}-1>a_{2}-1>\ldots>a_{m}-1 \geqslant 0$

$$
\begin{aligned}
& \& b_{1}>b_{2}>\cdots>b_{m} \geqslant 0, \sum_{i=1}^{m}\left(a_{i}-1\right)+\sum_{i=1}^{m} b_{i}
\end{aligned}
$$

Now observe that there is a 1-1 correspondence between the number of F-partitions of λ \& the number of ordinary partitions of N
Hence the constant term in $\phi(\varepsilon)$ is nothing but the gen.fn. for partitions, i.e; $\frac{1}{(q)_{\infty}}$.

$$
\Rightarrow A_{0}(q)=\frac{1}{(q ; q)_{\infty}}
$$

The general principle
If $f_{A}(z, q)=f_{A}(z)=\sum p_{A}(m, n) z^{m} q^{n}$ denotes the generating function for $P_{A}(m, n)$, which is the number of pons of n into m parts subject to the restriction A, then the function $f_{A}(z q) f_{B}\left(z^{-1}\right)$ has, as its constant term, the generating function

$$
\Phi_{A, B}(q)=\sum_{n \geqslant 0} \phi_{A, B}(n) q^{n}
$$

where $\phi_{A, B}(A)=$ the number of F-partitions $\left(\begin{array}{lll}a_{1} & a_{2} \\ b_{1} & b_{2} & \ldots a_{r}\end{array}\right)$ in which the top row is subject to the set of restrictions $A \&$ the bottom row is subject to the set of restrictions B.

Example: In the proof of $J T P I$, $A=B=D$ where D is the set restriction that the parts are distinct \& non-negative

$$
\underbrace{\prod_{n=0}^{\infty}\left(1+z q^{n}\right)}=\sum_{n, n=0}^{\infty} p_{d}(m, n) z^{m} q^{n} .
$$

Definitions and examples
(1) A_{k} denotes the condition that 'each part is repeated at most k times?.

$$
\Phi_{k}(q)=\Phi_{A_{k}, A_{k}}(q):=\sum_{n=0}^{\infty} \phi_{A_{k}, A_{k}}(n) q^{n}=\sum_{n=0}^{\infty} \phi_{k}(n) q^{n}
$$

Note: $\phi_{1}(n)=p(n)$.
Now let us take an example of $\phi_{2}(3)=$ the number of F-partitions of 3 where the parts are allowed to repeat atmosb twice are given by

