$3 / 8 / 2021$
MA 633- Partition Theory -Lecture 1
Defn: A partition of a number n is a non-incr--casing. sequence of positive integers which sum to n.

Eg: $\quad n=4$

$$
\begin{gathered}
4 \\
3+1 \\
2+2 \\
2+1+1 \\
1+1+1+1
\end{gathered}
$$

- Defn: Partition function $p(n)$ counts the number of partitions of n.

$$
\Rightarrow \quad p(4)=5
$$

$$
\begin{array}{cc}
P(5)=7 & 5 \\
& 4+1 \\
& 3+2 \\
& 3+1+1 \\
& 2+2+1 \\
& 2+1+1+1 \\
& 1+1+1+1+1
\end{array}
$$

$$
\begin{aligned}
& p(6)=11 \\
& p(20)=627 \\
& p(100)=190569292 \\
& p(200)=3972999029388
\end{aligned}
$$

- Ramanujan's congruences for $p(n)$. (1919)

$$
\begin{aligned}
& p(5 n+4) \equiv 0(\bmod 5) \\
& p(7 n+5) \equiv 0(\bmod 7) \\
& p(11 n+6) \cong 0(\bmod 11)
\end{aligned}
$$

"It appears that there are no equally simple properties for any moduli involving primes other than these $3^{\prime \prime}$.

- proved by Scott $_{(2003)}$ Ahlgren \& Matt Boylan
- Ramanujan's more general conjecture:

Let $\delta=5^{a} 7^{b} 11^{c} \& \quad \lambda$ is any integer 9 $24 \lambda \equiv 1(\bmod \delta)$. Then

$$
p(n \delta+\lambda) \equiv 0(\bmod \delta) .
$$

Chowla: $(24)(243) \equiv 1\left(\bmod 7^{3}\right)$
but $7^{3} \times p(243)$
Correct conjecture :

$$
\begin{aligned}
& \delta^{\prime}=5^{a} 7^{b^{\prime}} 11^{c}, \quad b^{\prime}=\left\{\begin{array}{cc}
b, & \text { if } b=0,1,2 \\
\left\lfloor\frac{b+2}{2}\right\rfloor, \text { if } b>2
\end{array}\right. \\
& P\left(n \delta^{\prime}+\lambda\right) \equiv o\left(\bmod \delta^{\prime}\right) .
\end{aligned}
$$

* Sometimes we are not interested in all partitions of m but only those belonging to a particular subset of n.
Eg.
$P_{0}(n)=$ the number of partitions of n into odd parts.

$$
\begin{aligned}
& n=5 \quad 5 \\
& 4+1 x \\
& P_{0}(5)=3 \\
& 3+2 x \\
& 3+1+1 L \\
& 2+2+1 x \\
& 2+1+1+1 x \\
& 1+1+1+1+1
\end{aligned}
$$

- $P_{d}(n)=$ number of partitions of n into distinct parts

$$
\begin{gathered}
5+1 \\
\begin{array}{c}
4+1 \\
3+2 \\
3+1+1
\end{array} \\
\begin{array}{c}
2+2+1 \times x \\
2+1+1+1 x \\
1+1+1+1+1 x
\end{array} \\
\Rightarrow P_{0}(5)=P_{d}(5)
\end{gathered}
$$

$$
\begin{aligned}
& n=6 \quad 6 \quad \times \quad p(6)=11 \\
& 4+2 x \quad p_{0}(6)=4 \\
& 3+3 \quad x \\
& 3+2+1 \\
& 3+1+1+1 \\
& 2+2+2 \\
& 2+2+1+1 \frac{x}{x} \\
& 2+1+1+1+1 x \\
& 1+1+1+1+1+1+
\end{aligned}
$$

$$
\begin{aligned}
& 6 \\
& \begin{array}{l}
5+1 \\
4+2
\end{array} \\
& 4+1+1 \quad x \\
& P_{d}(6)=4 \\
& 3+3 \quad x \\
& 3+2+1 \\
& 3+1+1+1 x \\
& 2+2+2 x \\
& 2+2+1+1 x \\
& 2+1+1+1+1 x \\
& 1+1+1+1+1+1 x \\
& \Rightarrow P_{0}(6)=P_{d}(6) .
\end{aligned}
$$

Euler: $p_{0}(n)=p_{d}(n) \quad \forall n \in \mathbb{N}$.

Dean.
Generating function: The generating function $f(q)$ for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is the power series $\sum_{n=0}^{\infty} a_{n} q^{n}$.

Defn. Let H be the set of positive integers, "H" denotes the set of all partitions whose parts lie in H.
$P\left(\right.$ " $\left.H^{\prime \prime}, n\right)=$ number of partitions of n that have their parts in H.
$H_{0}=$ set of all odd positive integers.

$$
p\left(H_{0}^{\prime \prime}, n\right)=p_{0}(n)
$$

Defn. Let "H" $(\leqslant d)$ denote the set of all partitions of n whose parts lie in H \& do not appear more than 'd' times.

$$
p\left(\mathbb{N}^{\prime \prime}(\leqslant 1), n\right)=P_{d}(n)
$$

The. 1 Let $H \subseteq \mathbb{N} . \&$ let

$$
\begin{aligned}
& f(q)=\sum_{n=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, n\right) q^{n} \\
& f_{d}(q)=\sum_{n=0}^{\infty} p\left({ }^{11} H^{\prime \prime}(\leqslant d), n\right) q^{n}
\end{aligned}
$$

Then for $|q|<1$,

$$
\begin{aligned}
& f(q)=\prod_{n \in H} \frac{1}{1-q^{n}} ; \\
& f_{d}(q)=\prod_{n \in H}\left(1+q^{n}+q^{2 n}+\cdots+q^{d n}\right)=\prod_{n \in H} \frac{1-q^{(d+1) n}}{1-q^{n}} .
\end{aligned}
$$

