$4 / 8 / 2021$
MA 633- Partition Theory -Lecture 2
Deft. Generating function: The generating function $f(q)$ for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is the power series $\sum_{n=0}^{\infty} a_{n} q^{n}$.
Defn. Let H be the set of positive integers, 1 "H" denotes the set of all partitions whose parts lie in H.

$$
P\left(\text { " } H^{\prime \prime}, n\right)=\text { number of partitions of } n
$$ that have their parts in H.

$H_{0}=$ set of all odd positive integers.

$$
p\left(H_{0}^{\prime \prime}, n\right)=p_{0}(n)
$$

Defn. Let "H" $(\leqslant d)$ denote the set of all partitions of n whose parts lie in H \& do not appear more than 'd' times.

$$
P\left({ }^{\prime \prime} \mathbb{N}^{\prime \prime}(\leqslant 1), n\right)=P_{d}(n) .
$$

Tho. 1 Let $H \subseteq \mathbb{N}$ \& let

$$
\begin{aligned}
& f(q)=\sum_{n=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, n\right) q^{n} \\
& f_{d}(q)=\sum_{n=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}(\leqslant d), n\right) q^{n}
\end{aligned}
$$

Then for $|q|<1$,

$$
\begin{aligned}
& f(q)=\prod_{n \in H} \frac{1}{1-q^{n}} ; \\
& f_{d}(q)=\prod_{n \in H}\left(1+q^{n}+q^{2 n}+\cdots+q^{d n}\right)=\prod_{n \in H} \frac{1-q^{(d+1) n}}{1-q^{n}} . \\
& \text { Proof: Since }|q|<1 .
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{n \in H} \frac{1}{1-q^{n}}=\prod_{n \in H}\left(1+q^{n}+q^{2 n}+q^{3 n}+\cdots \cdots\right) \\
&=\left(1+q^{h_{1}}+q^{2 h_{1}}+q^{3 h_{1}}+\ldots\right)\left(1+q^{h_{2}}+q^{2 h_{2}}+q^{3 h_{2}}+\ldots\right) \\
&\left(1+q^{h_{3}}+q^{2 h_{3}}+q^{3 h_{3}}+\cdots\right) \cdots . \\
&=\left(\sum_{m_{1}=0}^{\infty} q^{m_{1} h_{1}}\right)\left(\sum_{n_{2}=0}^{\infty} q^{m_{2} h_{2}}\right)\left(\sum_{m_{3}=0}^{\infty} q^{m_{3} h_{3}}\right) \ldots \\
&= \sum_{m_{1}, m_{2} m_{3}, \ldots}^{\infty}=0
\end{aligned}
$$

Suppose $N=m_{1} h_{1}+m_{2} h_{2}+m_{3} h_{3} \ldots \ldots$
We sec that the exponent of q is the partition $\left.\left(\left.h_{1}^{m_{1}} h_{2}^{m_{2}}\right|_{3} ^{m_{3}}\right)_{0} \cdots\right)$

Thus, q^{N} will occur in the above multi-sum (or, equivalently, in the infinite product) once for each partition of N with parts from H,

$$
\Rightarrow \prod_{n \in H} \frac{1}{1-q^{n}}=\sum_{N=0}^{\infty} p\left(H^{\prime \prime}, N\right) q^{N} .
$$

Remark:
If $H=N$, then

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}
$$

If $H=2 \mathbb{N}+1$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p_{0}(n) q^{n}=\frac{1}{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)\left(1-q^{7}\right) \ldots} \\
& =\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{2 n-1}\right)}
\end{aligned}
$$

$2^{\text {nd }}$ part:

$$
\begin{aligned}
& \prod_{n \in H}\left(1+q^{n}+q^{2 n}+\ldots+q^{d n}\right) \\
& =\left(\sum_{m_{1}=0}^{d} q^{m_{1} h_{1}}\right)\left(\sum_{m_{2}=0}^{d} q^{m_{2} h_{2}}\right) \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m_{1}, m_{2}, \ldots=0}^{d} q^{m_{1} h_{1}+m_{2} h_{2}+\cdots} \\
& =\sum_{N=0}^{\infty} p\left(H^{\prime \prime}(\leqslant d), N\right) q^{N}
\end{aligned}
$$

Multiplication of finitely many absolutely convergent series is justified, but what about infinitely many absolutely conv. series?
To justify this, truncate the infinite product

$$
\prod_{n \in H}^{1-q^{n}} \frac{1}{1} \prod_{i=1}^{n} \frac{1}{1-q^{h_{i}}}
$$

This truncated product generates partitions of integers whose parts come from

$$
\begin{aligned}
& \left\{h_{1}, h_{2}, \ldots, h_{n}\right\} . \\
& \prod_{i=1}^{n} \frac{1}{1-q^{h}}=\prod_{i=1}^{n}\left(1+q^{h_{i}}+q^{h_{i}} \ldots\right)
\end{aligned}
$$

Now the multiplication of finitely many absolutely convergent series makes sense,

Now $q \in \mathbb{R} \sim \quad 0<q<1$, Let $M=h_{n}$,

$$
\begin{aligned}
& \sum_{j=0}^{M} p\left({ }^{\prime \prime} H^{\prime \prime}, j\right) q^{j} \leq \prod_{i=1}^{n} \frac{1}{1-q^{h_{i}^{\prime}}} \\
& \left(1+q^{h_{1}}+q^{2 h_{1}}+\ldots\right)\left(1+q^{h_{2}}+q^{2 h_{2}}+\ldots\right) \\
& \cdots\left(1+q^{h_{n}}+q^{2 h_{n}}+\ldots\right) \\
& \leq \prod_{i=1}^{\infty} \frac{1}{1-q^{h_{i}}}<\infty \\
& 0<q<1 \Rightarrow 0<q^{h_{i}}<1 \Rightarrow-1<-q^{h_{i}}<0 \\
& \Rightarrow 0<1-q^{h_{i}}<1 \\
& \Rightarrow \frac{1}{1-q^{h_{i}}}>1 \\
& \text { (JUSTIFICATION) }
\end{aligned}
$$

Complex analysis tells us that $\prod_{i=1}^{\infty} \frac{1}{1-q^{h_{i}}}<\infty$ if and only if $\sum_{i=1}^{\infty}\left(\frac{1}{1-q^{h_{i}}}-1\right)$
Now ∞ if $\frac{1}{1-q^{h_{i}}}-1>0$.

It can be proved that

$$
\sum_{i=1}^{\infty} \frac{q^{i}}{1-q^{i}}<\infty \quad(\text { Root test } t)
$$

Since $\sum_{j=0}^{M} p\left({ }^{11} H^{\prime \prime}, j\right) q^{j}$ is a bounded increasing seq; and hence converges.

$$
\Rightarrow \sum_{i=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, j\right) q^{j} \leq \prod_{i=1}^{\infty} \frac{1}{1-q^{h}}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{j=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, j\right) q^{j} \geq \prod_{i=1}^{n} \frac{1}{1-q^{h_{1}^{\prime}}} \\
\Rightarrow & \lim _{n \rightarrow \infty} \sum_{j=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, j\right) q^{j} \geqslant \prod_{i=1}^{\infty} \frac{1}{1-q^{h_{i}}} \\
\Rightarrow & \sum_{j=0}^{\infty} p\left(H^{\prime \prime}, j\right) q^{j} \geqslant \prod_{i=1}^{\infty} \frac{1}{1-q^{h_{1}}}
\end{aligned}
$$

From (1) \& (2) we have

$$
\sum_{j=0}^{\infty} p\left({ }^{\prime \prime} H^{\prime \prime}, j\right)^{\prime} q^{j}=\prod_{i=1}^{\infty} \frac{1}{1-q^{h_{i}}} .
$$

N

$$
\begin{aligned}
& m_{1}=4, m_{2}=m_{3}=m_{4}=0 \\
& 1+1+1+1 \\
& m_{1}=0, m_{2}=2, m_{3}=m_{4}=0 \\
& 2+2,2+1+1 \\
& 3+1,4
\end{aligned}
$$

$$
q^{4}
$$

