MA 623: Homework 3 (Due February 26)

(Note: Justify all the relevant steps.)

1. Let $\omega(n)$ denote the number of prime divisors of the positive integer n. Find an asymptotic estimate for the sum $\sum_{n \leq x} 2^{\omega(n)}$ with the error term $O(\sqrt{x} \log x)$.

2.Let $\varphi_1(n)$ be defined by

$$\varphi_1(n) := n \sum_{d|n} \frac{|\mu(d)|}{d}.$$

Prove that

$$\sum_{n \le x} \varphi_1(n) = \sum_{d \le \sqrt{x}} \mu(d) S\left(\frac{x}{d^2}\right),$$

where $S(x) = \sum_{k \le x} \sigma(k)$. Then deduce that for $x \ge 2$,

$$\sum_{n \le x} \varphi_1(n) = \frac{\zeta(2)}{2\zeta(4)} x^2 + O(x \log x).$$

3. Let f(x) and g(x) be positive, continuous functions on $[0, \infty)$, and set $F(x) = \int_0^x f(y) \, dy$, $G(x) = \int_0^x g(y) \, dy$. Show (by a counter-example) that the relation

$$f(x) = o(g(x)) \quad (x \to \infty)$$

does not imply

$$F(x) = o(G(x)) \quad (x \to \infty).$$

4. (a) Show that $\frac{1}{\phi} = \frac{1}{N} * f$, where $f = \frac{\mu^2}{N \cdot \phi}$. (b) Show that $\sum_{n=1}^{\infty} f(n) = O(1)$. (c) If $x \ge 2$, show that

$$\sum_{n \le x} \frac{1}{\phi(n)} = O(\log x).$$