MA 623: Homework 3 (Due February 26)

(Note: Justify all the relevant steps.)

1. Let $\omega(n)$ denote the number of prime divisors of the positive integer n. Find an asymptotic estimate for the sum $\sum_{n \leq x} 2^{\omega(n)}$ with the error term $O(\sqrt{x} \log x)$.
2.Let $\varphi_{1}(n)$ be defined by

$$
\varphi_{1}(n):=n \sum_{d \mid n} \frac{|\mu(d)|}{d}
$$

Prove that

$$
\sum_{n \leq x} \varphi_{1}(n)=\sum_{d \leq \sqrt{x}} \mu(d) S\left(\frac{x}{d^{2}}\right)
$$

where $S(x)=\sum_{k \leq x} \sigma(k)$. Then deduce that for $x \geq 2$,

$$
\sum_{n \leq x} \varphi_{1}(n)=\frac{\zeta(2)}{2 \zeta(4)} x^{2}+O(x \log x)
$$

3. Let $f(x)$ and $g(x)$ be positive, continuous functions on $[0, \infty)$, and set $F(x)=$ $\int_{0}^{x} f(y) d y, G(x)=\int_{0}^{x} g(y) d y$. Show (by a counter-example) that the relation

$$
f(x)=o(g(x)) \quad(x \rightarrow \infty)
$$

does not imply

$$
F(x)=o(G(x)) \quad(x \rightarrow \infty)
$$

4. (a) Show that $\frac{1}{\phi}=\frac{1}{N} * f$, where $f=\frac{\mu^{2}}{N \cdot \phi}$.
(b) Show that $\sum_{n=1}^{\infty} f(n)=O(1)$.
(c) If $x \geq 2$, show that

$$
\sum_{n \leq x} \frac{1}{\phi(n)}=O(\log x)
$$

