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In the following problem, you have to design a data-structure that can support the following operations:

1. INSERT(a) : Insert an integer a in the data-structure

2. DELETE-MIN() : Deletes the minimum integer from the current data-structure.

We first describe an algorithm that can insert an element in O(1) time and delete-min in O(n) time.
This can be done using a linked list where an element can be added in the front to the head of the list. For
DELETE-MIN(), we can scan the list while maintaining the minimum element. Thus, DELETE-MIN() can
be executed in O(n) time.

Now, we describe an algorithm that can insert an element in O(n) time and delete-min in O(1) time. To
this end, we maintain an ordered or sorted list. Whenever we have to insert an element, we can traverse the
list (using two pointers) and add the element in its correct position (after doing some pointer manipulation).
So, insertion takes O(n) time. For DELETE-MIN(), we can just remove the first element from the list. Thus
DELETE-MIN() takes O(1) time.

Thus, we have seen two data-structure whose running time are contrasting:

INSERT(a) DELETE-MIN()
List O(1) O(n)

Ordered List O(n) O(1)

A natural question arises whether we can insert and delete on O(1) time. This is indeed a challenging
problem and we will now describe a data-structure that can do both the operations in O(log n) time. Note
that we sacrifice the O(1) time for one of the operation but this leads to exponential improvement in the
other operation.

To get O(log n) performance, we need to design a data-structure such that the "length of the data-
structure" is O(log n). This is contrast with the above two data-structure whose length is O(n), thats why
their running time was O(n).

However, this presents a unique challenge: how can the length of the data-structure is O(log n) when
the number of elements in it is n. The answer to the above problem is a tree which is defined as follows:

1. Each tree has a unique root.

2. Each node in the tree has following fields.

(a) value

(b) at most one left child

(c) at most one right child

(d) at most one parent
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Figure 1: A heap which contains numbers [1 . . . 2k+1 + 1]

If a node has no left or right child, then it is called a leaf. A node which is not a leaf is called an
internal node. All nodes in the tree except the root has a unique parent.

3. For each internal node v, v.value ≤ (v.left).value, if the left child of v exists. Similarly, v.value ≤
(v.right).value, if the right child of v exists.

The above property is called the heap property. Heap property implies that the root contains the
minimum element of the heap.

4. All the levels i (except the last one) contains 2i nodes. On the last level, the nodes are added from the
left to right.

One of the main requirement of our data-structure is that its "length" is O(log n). The above condition
will be used crucially to prove this fact (See Lemma 0.1).

An example of heap can be seen in Figure 1. We now prove the following lemma:

Lemma 0.1. The distance from a root to leaf in a heap is ≤ O(log n), or the height of the heap is O(log n).

Proof. Let us assume that we have heap that contains n elements at k + 1 levels. Since condition (4) holds
for the heap, all the levels i (1 ≤ i ≤ k) are saturated. However, level k + 1 might contain few elements.
Let l be the total number of elements at level k + 1. This implies that that the total number of elements in
the heap is

∑k
i=0 2

k + l. however the total number of elements in the heap is n. So
∑k

i=0 2
k + l = n =⇒∑k

i=0 2
k ≤ n =⇒ 2k+1 − 1 ≤ n. Thus k + 1 ≤ log(n+ 1). Thus the height of the heap is O(log n).

We now use heap to perform the two operations. Assume that we have a heap in Figure 2 and we want
to now perform INSERT(4). To satisfy condition (4), we add a new node (with value 4) at the last level.
However, the heap property (condition (3)) might not hold after this addition. We now shift up node 4 to
the root trying to satisfy the heap property at each iteration. We first check if value at the parent of node 4
is greater than 4. If yes, then we swap 4 with the value at its parent node. This process goes on till we hit
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(a) The initial heap
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Figure 2: A run of our algorithm after INSERT(4)
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the root or we arrive at a node such that the heap property holds at its root. Please refer to Figure 2 for a
pictorial run of this algorithm.

The pseudo code for the algorithm is given below:

1 Make a new node v with v.value← a,
v.left← null and v.right← null;

2 Find the right place for v on the last level ;
3 SHIFT-UP(v);

(a) INSERT(a)

1 if v is a root then
2 return;
3 end
4 else
5 if (v.parent).value > v.value then
6 swap( v.value, (v.parent).value);
7 SHIFT-UP(v.parent);
8 end
9 end

(b) SHIFT-UP(v)

Figure 3: Inserting a node in the heap

Except step (2) in Figure (a) (of INSERT(a)), the running time of INSERT(a) depends on the running
time of SHIFT-UP(v). SHIFT-UP(v) moves from the leaf to the root swapping the values parent and child
if the heap property is not satisfied for the parent. Thus the running time of SHIFT-UP(·) depends on the
height of the tree. Using lemma 0.1, we have seen that the height of the heap is O(log n). Thus we have
shown the following lemma:

Lemma 0.2. The running time of the procedure INSERT(a) in Figure 3(a) (except Step 2 in INSERT(a)) is
O(log n).

Let us now focus on the procedure DELETE-MIN(). From our construction, we see that root of the heap
contains the minimum element. So, we can return this element. However, we have to delete this element
and process the heap. To this end, we use the following procedure:

1 a← root.value;
2 Let v be the last node at the last level of the

heap;
3 root.value← v.value;
4 Deallocate the memory of v;
5 SHIFT-DOWN(root);
6 return a;

(a) DELETE-MIN()

1 if v.value < (v.left).value and
v.value < (v.right).value then

2 return;
3 end
4 else
5 u← child of v with minimum value;
6 swap(v.value, u.value);
7 SHIFT-DOWN(u);
8 end

(b) SHIFT-DOWN(v)

Figure 4: Deletion from the heap

In principle, the DELETE-MIN() procedure is same as the INSERT(a) procedure. However, the novel
step in this procedure is to choose the last node at the last level of the heap and copy its value to the root.
This is done to maintain the condition (4) of the heap. Like lemma 0.2, we can show the following lemma:

Lemma 0.3. The running time of the procedure DELETE-MIN() in Figure 4(a) (except Step 2 in DELETE-
MIN()) is O(log n).
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(a) The initial heap
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Figure 5: A run of our algorithm after DELETE-MIN()

A pictorial run of the procedure DELETE-MIN() is shown in Figure 5.
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