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As it turns out, we already know of a data-structure that can sort an array. Consider the following
algorithm that uses a heap.

1 foreach i← 1 to n do
2 INSERT(A[i]);
3 end
4 foreach i← 1 to n do
5 print (DELETE-MIN());
6 end

Note that the first for loop adds n integers in the heap. So, the time taken for each insert is at most
O(log n). Similarly, the time taken to delete the minimum element from a heap of size at most n is O(log n).
Since we insert and delete at most n times, the running time of the above algorithm is O(n log n). The above
algorithm sorts the array as the delete-min algorithm always outputs the minimum elements from the current
set of elements.

However, for the above algorithm we are using extra space of O(n) for our heap. As we have already
seen that heaps can be implemented using an array too. So, can we build the heap with using only constant
extra memory and perform heap sort?

Consider the following algorithm for building the heap in-place:

1 foreach i← n/2 to 1 do
2 SHIFT-DOWN(i);
3 end

(a) BUILD-HEAP()

1 if A[i] < A[2i] and A[i] < A[2i+ 1] then
2 return;
3 end
4 else
5 i′ ← index of child of v with least value;
6 swap(A[i], A[i′]);
7 SHIFT-DOWN(i′);
8 end

(b) SHIFT-DOWN(i)

To understand the above algorithm, visualize the array to represent a nearly complete binary tree. We
claim that in such a binary tree, all the nodes from n/2 + 1 to n are leaves. A leaf in itself satisfy the heap
property which is stated below:

Property 0.1. For any node v in the heap, the value at the left child of v and the value at the right child is
≤ value at v.
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For a leaf – which does not have any children – the heap property is trivially satisfied. Thus, we look
at the first internal node in this implicit binary tree, that is i ← n/2. We perform SHIFT-DOWN operation
on this node so that heap-property is satisfied for this node. However, when we shift-down, we need to
recursively check that heap-property is satisfied for the node that is shift-down. We now show that the
BUILD-HEAP() builds a valid heap.

Lemma 0.2. After the ith iteration of BUILD-HEAP(), the subtree under A[i], A[i+ 1], . . . , A[n] is a heap.

Proof. We prove by induction on i. The base case is when i ∈ [n/2+1, n]. Since we have argued that these
nodes implicitly represent leaves, the heap-property is satisfied for these nodes. So the subtree under these
nodes is trivially a heap.

Assume by induction that after the (i+1)th iteration, the subtree under A[i+1], A[i], . . . , A[n] is a heap.
And we have to prove the statement of the lemma for iteration i. Consider the procedure SHIFT-DOWN(i).
There are three cases to consider:

1. A[i] ≤ A[2i] and A[i] ≤ A[2i+ 1].

By induction hypothesis, the subtree under A[2i] and A[2i + 1] is a heap. This implies that A[2i]
and A[2i+ 1] contains the minimum element of the heap under their respective tree. Thus A[i] is the
minimum element in tree rooted at A[i]. Thus subtree rooted under A[i] is a heap.

2. ∃ a child of i, say i1 ∈ [2i, 2i+ 1], such that A[i1] is the least element in the set {A[2i], A[2i+ 1]}.
In such a scenario, we swap A[i] by A[i1]. Thus A[i] now contains the minimum element. However,
A[i1] might not satisfy the heap property. To set this node right, we again perform SHIFT-DOWN(i1).
After this procedure is executed the heap property is satisfied for A[i1] but may not be satisfied for a
child of i1, say i2. However, this process will not go on forever. That is, there exists an descendent of
i , say ik such that either condition 1 is satisfied for ik or A[ik] is a leaf in the heap. In either case, the
tree under A[i] is a heap.

Let us now find the running time of BUILD-HEAP(). Note that the implicit binary tree represented by
the array has O(log n) height (since the total number of elements in the array is n). Also, all the leaves in
this tree can be at height log n or log n − 1. For such a leaf, BUILD-HEAP() does no processing. Consider
all the internal nodes in this tree at level log n− 1. SHIFT-DOWN(·) on such a node can take c time (where c
is come constant). The constant term c occurs due to the fact that SHIFT-DOWN(·) on such a node can shift
down values at most once till a leaf is reached. Also, the total number of internal nodes at level log n−1 can
at most be 2logn−1. Thus the total time taken by BUILD-HEAP() to process internal nodes at level log n− 1
is c× 2logn−1. Once can similarly calculate that the total time taken by BUILD-HEAP() to process nodes at
level j(0 ≤ j ≤ log n− 1) is (log n− j)c× 2j . Thus the total time taken by BUILD-HEAP() is

S = c

logn−1∑
j=0

(log n− j)× 2j (0.1)

Dividing by 2 throughout,

S/2 = c

logn−1∑
j=0

(log n− j)× 2j−1 (0.2)

Subtracting Equation 0.2 from Equation 0.1, we get:
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S/2 = − log n

2
+

logn−1∑
j=0

2j = − log n

2
+ 2logn − 1 = − log n

2
+ n− 1.

Thus, S = O(n) and the running time of BUILD-HEAP() is O(n).

We are now ready to design our in-place algorithm fro heapsort.

1 BUILD-HEAP();
2 foreach i← 1 to n do
3 print (DELETE-MIN());
4 end

We have already seen that BUILD-HEAP() takes O(n) time. However, steps 2-3 in the above algorithm
take O(n log n) time. This is because we are deleting the minimum element from the heap n times and each
such deletion takes O(log n) time. Thus the running time of heapsort is still O(n log n).

Let us now take a look at the worst case example for heap sort. Assume that the initial array A =
[1, 2, 3 . . . , n]. One can check this array represents a heap implicitly. Even BUILD-HEAP() will not swap
any element in array as it is already a heap. Consider the first n/2 invocations of DELETE-MIN() from this
heap. We claim that each such invocation will take log n time. Consider the first invocation of DELETE-
MIN(). So the minimum element at the top of the heap A[1] = 1 is deleted from the heap and the last
element of the heap A[n] = n is moved to the top, that is, A[1]. We claim that SHIFT-DOWN(1) (See the
heap lecture notes) takes O(log n) time as the value n should again move to the leaf. In fact, the above claim
is true for the first n/2 deletions. Thus, the running time of heapsort after the first n/2 deletions is n logn

2 .
Thus the running time of heapsort is at least ≈ n log n.

What about the best case and the average case running time of heapsort. Unfotunately, this is not such
an easy question to answer. In [1], Robert Sedgewick and Russel Schaffer showed the the best case for
heapsort also takes O(n log n) time. From the above two results, we claim that the average case of heapsort
is O(n log n).
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