
Lists

Manoj Gupta

August 7, 2016

Assume that you are owner of a company that contains 5 employee. Each employee is represented by a
tuple { name, salary}. A natural way to represent an employee is using a structure and five employees via an
array. In course of time, new employees join the company or old employees leave the company. We should
find a way to process these changes. Consider the case when the sixth employee joins the company. Since
our initial array size was 5, we now need to allocate space for this sixth employee. A trivial way is then to
construct a new array of size 6 and copy the first five employee from empRecord to this new array.�
s t r u c t r e c o r d {

char name [1 0 0] ;
i n t s a l a r y ;

} ;

s t r u c t r e c o r d empRecord [5] ;
� �
This process seems non-optimal as it involves creation of a new array. One needs to ask why arrays fail:

it is because the size of arrays cannot increase. It is fixed at its definition. If the number of employee
overshoots this size, then the only way to recover is to define a new array of bigger size.

It may seem that deleting an employee is not a problem as it does not increase the size of the array.
However, if many employee leave the company, the size of the array is now more than the number of
employees. Not only this is a wastage of space, it increases the time to search for employees. In all, we want
a data-structure that has the following property:

The space taken by the data-structure should be proportional to the number of employees in the company.

To this end, we will tweak the above code.�
s t r u c t r e c o r d {

char name [1 0 0] ;
i n t s a l a r y ;
s t r u c t r e c o r d ∗ n e x t ;

} ;

s t r u c t r e c o r d ∗ head = NULL;
� �
Our new definition contains a pointer to the structure of the same type. One can construct a data-structure
for 5 employees using the above definition as follows:

1. head points to the first employee record.

2. Each ith record (1 ≤ i ≤ 4), the next pointer points to the (i+ 1)th record.

3. The next pointer of the fifth record points to null.

Pictorially the five employees are represented as follows:

head
a

1

b

2

c

3

d

4

e

5

Figure 1: Pictorial representation of five employees

In the ensuing discussion, we will use the following syntax to represent the employee record. If e is an
employee record, e.name and e.sal denotes the name and salary of the employee respectively. Also, e.next
either points to the next record or is null.

Consider the procedure ADDEMPLOYEE(name, salary) that adds an employee at end of the list.

1 e← allocate space for a new record;
2 e.name← name ;
3 e.sal← salary ;
4 e.next← null ;
5 if head is null then

/* The list is empty */
6 head← e ;
7 end
8 else

/* The list is not empty */
9 while head.next is not equal to null do

10 head← head.next ;
11 end
12 head.next← e ;
13 end

Figure 2: ADDEMPLOYEE(name, salary)

This procedure first allocate space, e, for a new employee and populates its name and salary. It’s next
pointer is set to null as this employee will be the last employee in the list. If there are no employees in the
list (if condition), then e is the first employee in the list. So, head points to e. Else, head already points
to some employee record. So, we use the next pointer to reach the last record in this list. Then, we set the
next pointer of this last record to point to e. Thus, e becomes the last record in this list.

We now describe a procedure DELETE(name) which deletes the employee record e with e.name =
name. If the list is empty then there is nothing to be done. Else, we check if the first record matches with
name. If yes, then we let head point to head.next and then deallocate the space allocated to the first record.
Else, the first record does not match with name. In that case, we move through the list using two pointers p
and q with the property that q.next = p. If at any stage, we find that p.name = name, the q.next is set to
p.next. Then, the memory allocated to record p is deallocated.

One can check that the space taken by the list is proportional to the number of employees in the company.
This was the main property that we wanted from our data-structure. As far as this property is concerned , the

2

1 if head is null then
/* The list is empty */

2 return;
3 end
4 else

/* The list is not empty */
5 if head.name = name then

/* The first record matches */
6 e← head;
7 head← head.next;
8 deallocate the memory allocated to record e;
9 end

10 else
11 q ← head;
12 p← head.next;
13 while p is not null do
14 if p.name = name then
15 q.next← p.next;
16 deallocate the memory allocated to record p;
17 end
18 else
19 q ← p;
20 p← p.next;
21 end
22 end
23 end
24 end

Figure 3: DELETE(name)

3

list data-structure is better than array. However, one needs to be aware of the disadvantages of lists. If we
want to find the ith employee in the list, then we can use the following procedure FIND(i). This procedure
moves to ith record using the next pointers. So, the time taken to find the ith record is proportional to
i. However, if we had implemented our data-structure as an array, then the ith record can be retrieved in
constant time.

1 count← 1;
2 while head is not equal to null and count ≤ i do
3 head← head.next;
4 count← count+ 1;
5 end
6 return head

Figure 4: FIND(i)

4

