
MergeSort

Manoj Gupta

September 11, 2016

Consider the following algorithm which merges two sorted array A1 and A2 of size n1 and n2. For this,
we maintain two counters c1 and c2 which is initialized to 1. We move through these two array in increasing
order picking up the minimum element at each step.

1 make a new array A of size n1 and n2;
2 c1 ← 1;
3 c2 ← 1;
4 c← 1;
5 while c1 ≤ n1 and c2 ≤ n2 do
6 if A1[c1] ≤ A2[c2] then
7 A[c]← A1[c1];
8 c← c+ 1;
9 c1 ← c1 + 1;

10 end
11 else
12 A[c]← A2[c2];
13 c← c+ 1;
14 c2 ← c2 + 1;
15 end
16 end
17 while c1 ≤ n1 do
18 A[c]← A1[c1];
19 c← c+ 1;
20 c1 ← c1 + 1;
21 end
22 while c2 ≤ n2 do
23 A[c]← A2[c2];
24 c← c+ 1;
25 c2 ← c2 + 1;
26 end

Figure 1: MERGE(A1, A2) :Merging two sorted arrays

We now design an algorithm that uses the above merge algorithm to sort an array. This is a recursive
algorithm which firsts partitions the array into two equal parts and invoke mergesort on these two sub-array.
Assume that mergesort sorts these sub-arrays, then using our procedure MERGE(·, ·), we can merge these
two sorted sub-arrays to get a single sorted array of size n.

1



1 if n = 1 then
2 return A[1];
3 end
4 else
5 A1 ← MERGESORT(A[1 . . . n/2]);
6 A2 ← MERGESORT(A[n/2 + 1 . . . n]);
7 A3 ← MERGE(A1, A2);
8 return A3;
9 end

Figure 2: MERGESORT(A[1 . . . n])

We now see the run of our MERGESORT(A[1 . . . n]).'

&

$

%

5 1 3 10 9 7 2 4

5 1 3 10

5 1

5 1

3 10

3 10

9 7 2 4

9 7

9 7

2 4

2 4

[5] [1] [3] [10] [9] [7] [2] [4]

[1 5] [3 10] [7 9] [2 4]

[1 3 5 10] [2 4 7 9]

A3 = [1 2 3 4 5 7 9 10]

Figure 3: The run of MergeSort on the array A = [5, 1, 3, 10, 9, 7, 2, 4]

1 Proof of Correctness

We first prove that MergeSort sort n elements. To this end, we first prove the following simple lemma:

Lemma 1.1. Given two sorted arrays A1 and A2 of size n1 and n2 respectively, MergeSort(A1, A2) cor-
rectly merges the two array to find output a single sorted array.

Proof. The proof is by induction. Assume that MergeSort(A1, A2) correctly sorts two array if n1+n2 ≤ 2.
There are three sub cases in the base case: (1) If all the elements are in array A1, then the second while loop
in MERGE will sort the array. (2) Similarly if all the elements are in A2, then the third while loop will sort
all the elements. (3) Else each array has one element each and MERGE will choose the minimum in the first
while loop and put it in the auxillary array A3, and then it will put the second element, thus completing the
merge correctly.

Assume that MergeSort(A1, A2) correctly merges two array of size n1+n2−1. We will now prove that
MergeSort(A1, A2) merges array of size n1 + n2 respectively.

Consider the first comparison in the mergesort when the first element of A1, say a is compared with the
first element of A2, say b. Without loss of generality, assume that a < b. Then a is the first element in the
auxiliary array. Note that a is also the minimum element in A1 and A2. So, a has found it correct place in

2



A3. Now we increase the counter for A, c1 by 1. Thus we now have two arrays, A1 whose effective size
is n1 − 1 and A2 whose size if n2. By induction, MERGE will correctly merge these array and put all the
elements after a. So, MERGE(A1, A2) correctly merges array A1 and A2.

Lemma 1.2. MERGESORT(A) sorts array A of size n.

Proof. Again we will prove by induction on n. For the base case, assume that n = 1, thus A is trivially
sorted. Using strong induction hypothesis, assume that MERGESORT(A) sorts an array of size 1, 2, . . . , n−
1. Consider MERGESORT(·) on an array of size n. The procedure first divides the array into two parts of
size ≈ n/2. Using induction hypothesis, we claim that MERGESORT(·) will sort these two array of size
n/2. And using Lemma 1.1, we claim that MERGE(·, ·) will correctly merge these two sorted arrays to give
a single sorted array.

2 Running Time

We calculate the running time of MERGESORT using recurrence relation. One can show that the running
time of MERGE is O(n) if the cumulative size of two arrays is n. If T (n) is the time taken by mergesort to
sort an array of size n, then we can write T (n) as follows:

T (n) = T (n/2) + T (n/2) + cn

T (2) = c

Note that MERGESORT first divides the array into two parts of roughly equal size. The time taken by
MERGESORT to sort these two parts is T (n/2). This is because of our assumption that the time taken by
MERGESORT to sort an array of size n is T (n). We will also make assumption to make our calculations
simpler. Specifically, we will assume that n is a power of 2. This is mean that n/2i is always an interger
(till i = log n). The last equation equation above shows the time taken to merge the two sorted array. We
will now solve this recurrence relation using a method called repeated substitution. In this method, we
will repeatedly substitute the value of T ().

T (n) = 2T (n/2) + cn
= 2(2T (n/22) + cn/2) + cn
= 22T (n/22) + cn+ cn
= 22[2T (n/23) + c(n/22)) + 2cn
= 23T (n/23) + cn+ cn+ cn
= 23T (n/23) + 3cn

It is now easy to see the kth substitution will lead to the following equality: T (n) = 2kT (n/2k) + kcn.
However, this process cannot go on. We know that when each array is of size 1, T (2) = c. Thus, n/2k will
be 2, when n = 2k+1 or k = log n − 1. Thus T (n) = 2logn−1T (2) + log n(cn) = cn/2 + cn log n =
O(n log n). Thus, the running time of MERGESORT is O(n log n).

There is one more simple method to solve the above recurrence relation. In this method, we first guess
the answer to the recurrence relation and then prove it by induction. Since, we already know that T (n) =
O(n log n), there is nothing to guess here. So let us assume that T (n) ≤ cn log n.

Proof by Induction
For base case, T (2) ≤ c2 log 2 = 2c which is greater than c. Using strong induction hypothesis, assume

that T (i) ≤ ci log i for i = 1, 2, . . . , n−1. We will now prove that T (n) ≤ cn log n. To this end, we will use
the recurrence relation and apply induction hypothesis on T (n/2). We know that T (n) = 2T (n/2) + cn ≤
2c(n/2) log(n/2) + cn = cn(log n− 1) + cn = cn log n .

3



We also note that MERGESORT will always take a time of O(n log n) on any array independent of the
contents of the array. This is due to the fact that MERGE always takes O(n) time to merger two arrays whose
cumulative size is O(n).

4


