
Queues

Manoj Gupta

August 15, 2016

Consider the following problem in which you are given a grid of n × n cells. Some of the cells in
the grids are obstacles, that is, one cannot pass through these cells. Additionally, we are given the starting
location s (cell (0, 0)) and the ending location t (some cell (i, j)). The aim is to find the shortest distance
from s to t avoiding obstacles. Note that from a location, one can only move to right, left, above or below.

0

0

n

n

s

t

Figure 1: A grid with obstacles with a starting location s and an ending location t

A very naive algorithm for the above algorithm moves from the starting location one step at a time. So
after the first step, we can reach two nodes adjacent to s. Thus we have found out all the cells that are at
a distance 1 from s. After this iteration, we take all the cells that are at a distance 1 from s and repeat the
process. Thus at the end of second iteration, we will reach all the nodes at distance 2 from s (if such a cell
is not an obstacle). An algorithm based on the above observation can be found in Figure 2. One can prove
that this procedure correctly finds the shortest distance from s to t avoiding obstacles. We will focus on the
running time of our algorithm.

Consider the procedure FIND-NEXT-LAYER(Li). This procedure processes all the cells in layer Li and
adds any one of its adjacent cell b to layer i+1 if (1) b is not an obstacle and (2) b has not been reached before
(or distance[b] = ∞). Note that the inner for loop runs for 4 iterations as there are exactly 4 neighbors of
each cell. The outer for loop runs for |Li| iterations. So, the running time of FIND-NEXT-LAYER(Li) is
O(|Li|).

1

The main programs initializes distances of all the cells to ∞. Note that distance variable is used in
FIND-NEXT-LAYER(·) to deduce whether a cell is reached for the first time or not. The time taken to set
the distance is O(n2). We then set L0 to {s} as there is only one cell at a distance 0 from s, that is s itself.
We then use FIND-NEXT-LAYER(·) iteratively to find the set {L1,L2,L3 . . . }. The running time of the
main depends on the number of times FIND-NEXT-LAYER(·) is called. In any case the running time can be
bounded as follows: O(n2 +

∑∞
i=0 |Li|), where the first term is for the initialization of distances and the

second term is for summation of time taken by FIND-NEXT-LAYER(·).

1 Li+1 ← ∅;
2 foreach cell c in Li do
3 foreach neighbor b of c such that b is not

an obstacle do
4 if distance[b] =∞ then
5 distance[b]← i+ 1;
6 Li+1 ← Li+1 ∪ {b};
7 end
8 end
9 end

(a) FIND-NEXT-LAYER(Li)

1 foreach cell c in the grid do
2 distance[c]←∞
3 end
4 L0 ← {s};
5 i← 0;
6 while Li is not empty or Li does not contain

cell t do
7 FIND-NEXT-LAYER(Li);
8 end

(b) The main program

Figure 2: solving the grid problem

The main task then lies in finding the value of
∑∞

i=0 |Li|. To this end, we use the following observation.

Observation 0.1. Each cell can be a part of exactly one layer Li.

Since each layer Li can only contains cells, the above observation implies that
∑∞

i=0 |Li| = O(n2).
This implies that the running time of our main algorithm is O(n2).

We can ask whether there exists any other algorithm with better running time. However, that is not the
main focus of this topic. We are bothered by another implementation issue: Can we design an algorithm that
uses only one list (rather than many in our trivial algorithm)? To this end, we make the following important
observation:

Observation 0.2. In the main function, cells in layer Li+1 is processed only after all cells in layer Li are
processed.

If we have to use just one list, then we have to add cells in Li+1 at the end of the list and process each
cell from the start of the list. This is because the start of the list contains cell Li and we must process them
before processing cells in Li+1 which are added at the end of the list. In fact, the processing is done in FIFO
- First In First Out - order. Such a data-structure is called a QUEUE.

A queue must support the following operations

1. CREATE-QUEUE(): Create an empty queue.

2. ENQUEUE(a) : Add a at the end of the queue.

3. DEQUEUE(): Remove an element from the front of the list.

We can implement queues using a linked list. We maintain two pointers: front ad rear. Elements will
always be added to the rear of the list and will be removed from the front of the list. One can check that the
time taken for ENQUEUE(a) and DEQUEUE() takes O(1) time.

2

1 front← null;
2 rear ← null;

(a) CREATE-EMPTY()

1 allocate memory to a new node v;
v.value← a;

2 v.next← null;
3 if rear = null then

/* Queue is empty */
4 front← v;
5 rear ← v;
6 end
7 else
8 rear.next← v;
9 rear ← v;

10 end

(b) ENQUEUE(a)

1 if front = null then
2 print "Queue Empty";
3 end
4 else
5 v ← front;
6 a← v.value;
7 if front = rear then

/* Queue contains
onely one
element */

8 front← null;
9 rear ← null;

10 end
11 else
12 front← front.next;
13 end
14 end
15 deallocate the memory of v;
16 return a;

(c) DEQUEUE()

Figure 3: Implementation of Queues

Having implemented queues, we now proceed to implement a elegant solution to the shortest distance
problem on the grid where we use queues to seamlessly move from layer i to layer i + 1. One can check
that the running time of our algorithm is still O(n2) as each cell is inserted and removed from the queue at
most once (similar to Observation 0.2)

3

1 CREATE-EMPTY();
2 foreach cell c in the grid do
3 distance[c]←∞;
4 end
5 distance[s]← 0;
6 ENQUEUE(s);
7 while queue is not empty do
8 c← DEQUEUE();
9 foreach neighbor b of c which is not an obstacle do

10 if distance[b] =∞ then
11 distance[b]← distance[c] + 1;
12 ENQUEUE(b);
13 end
14 end
15 end

Figure 4: Implementation of Queues

4

