
QuickSort

Manoj Gupta

September 11, 2016

Given an unsorted array A and its first element A[1] (lets call it a pivot), can we put the pivot in its
correct position in the final sorted array? Note that we don’t actually aim to sort the array at this point but
just want to find the final position of the pivot. We now give a simple algorithm that use two extra array
S< and S> of size n. S< contains all the elements of A with value less than pivot and S> contains all the
elements in A with value greater than pivot.

1 S< ←elements in A with value less than pivot;
2 S> ← elements in A with value greater than pivot;
3 Put the elements in S< at the start of A;
4 Then put the pivot;
5 Then put all the elements in S> at the end of A;
6 return the index of pivot;

Figure 1: PARTITION(A): The partition function finds the correct place of pivot in A.

One can prove that the above algorithm correctly finds the final place of pivot. Note only that the array
to the left of pivot contains all the elements less than pivot and the array to the right of pivot contains all
the elements greater than pivot. We will use this property of PARTITION crucially in our sorting algorithm
called QUICKSORT. One can also check that the running time of PARTITION(A) is O(n) if A is of size n.

We will now describe our sorting algorithm:

1 if n = 1 then
2 return;
3 end
4 else
5 i← PARTITION(A);
6 QUICKSORT(1 . . . i− 1);
7 QUICKSORT(i+ 1 . . . n);
8 end

Figure 2: QUICKSORT(A[1 . . . n])

Lets us ask some simple question regarding the above algorithm. Assume that A = [1, 2, 3, . . . , n]. So,
the first element of A, pivot=1. Note that the pivot is already at it correct position, so PARTITION(A), even
after taking O(n), will leave A untouched. Since, there is no sub-array to the left of the pivot, we will then
call QUICKSORT(A[2 . . . n]). And the same pattern follows in the next call when pivot=2. We claim that
the running time of the above algorithm on this input can be calculated as follows: T (n) = T (n− 1) + cn,

1

where we know that after the first iteration we have found the final place of (pivot=)1 in O(n) time and then
we call QUICKSORT of size n− 1. One can calculate that T (n) = c

(
n
2

)
= O(n2).

Thus, we see that in the worst case QUICKSORT takes O(n2) time. What would then be the best case
for quick sort? One feels that if the pivot’s final place is in the middle of the array, then we would have
paritioned A into two sub-array of same size. Let us assume that in each invocation of QUICKSORT, pivot’s
final position is in the middle of the concerned array. Thus, the running time of QUICKSORT on such a
nice input can be roughly calculated as: T (n) = 2T (n/2) + cn, where T (n/2) is roughly the time taken by
QUICKSORT to sort the left and right array to the pivot and cn is the time taken by PARTITION. We have
seen above recurrence relation while analyzing MERGESORT and we know T (n) = O(n log n).

Thus, the running time of QUICKSORT varies from worst case O(n2) to best case O(n log n). However,
in practice QUICKSORT turns out to the best sorting algorithm. This leads us to believe that it might be very
fast on average. Thus, we now find the average running time of QUICKSORT.

The average running time of QUICKSORT, T (n) =
∑

S′⊂S Time take by QUICKSORT on S′

|S|
where |S| = n!. T (n) can be simplified as follows:

T (n) =
∑n

i=1 Time taken by QUICKSORT on all sequences with first element i
n!

=
∑n

i=1(n− 1)!(T (i− 1) + T (n− i) + cn)

n!

Since there are (n− 1)! sequences with first element i

=
1

n

n∑
i=1

T (i− 1) + T (n− i) + cn

=
(1
n

n∑
i=1

(T (i− 1) + T (n− i)
)
+ cn

Thus,

nT (n) =
(n∑

i=1

T (i− 1) + T (n− i)
)
+ cn2 (0.1)

Substituting n by n− 1, we get:

(n− 1)T (n− 1) =
(n−1∑

i=1

T (i− 1) + T (n− 1− i)
)
+ c(n− 1)2 (0.2)

Subtracting Equation 0.2 from Equation 0.1, we get,
nT (n)− (n− 1)T (n− 1) = T (n− 1) + T (n− 1) + c(n2 − (n− 1)2)
nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + c(2n− 1)
nT (n) ≤ (n+ 1)T (n− 1) + 2cn

Thus,
T (n)

n+ 1
≤ T (n− 1)

n
+

2c

n+ 1
(0.3)

2

Replacing n by (n− 1), we get

T (n− 1)

n
≤ T (n− 2)

n− 1
+

2c

n
(0.4)

At this point, we will use the substitution method and substitute Equation 0.4 in Equation 0.3. We get:
T (n)
n+1 ≤ T (n−2)

n−1 + 2c
n + 2c

n+1

≤ T (n−3)
n−2 + 2c

n−1 + 2c
n + 2c

n+1
Thus, we can do repeated substitution to get the following:
T (n)

n+ 1
≤ T (2)

1
+

2c

2
+

2c

2
+ · · ·+ 2c

n− 1
+

2c

n
+

2c

n+ 1

Assuming that T (1) = 2c, we get:

T (n) ≤ 2c(n+ 1)
(1
1
+

1

2
+

1

2
+ · · ·+ 1

n− 1
+

1

n
+

1

n+ 1

)
The last term in the above equation is a harmonic series whose rough approximate value is O(log(n+1)).

Thus, T (n) ≈ 2c(n+ 1) log(n+ 1). Thus T (n) = O(n log n).
Similar to MERGESORT, we can prove by induction that QUICKSORT correctly sorts an array. The

reader is encouraged to prove it himself. We will be move on the an important aspect of QUICKSORT. In
our current version of QUICKSORT, we use two extra array S< and S>. Can we execute the PARTITION

procedure without using extra, that is, using O(1) extra memory only.

1 PARTITION using O(1) extra memory

Since we have constant memory at our disposal, in one pass, we can find the final position of pivot. To this
end, we will maintain two counters c< and c> and count the number of elements less than and greater than
pivot.

1 c< ← 0;
2 c> ← 0;
3 pivot← A[1];
4 foreach i← 2 to n do
5 if A[i] < pivot then
6 c< ← c< + 1 ;
7 end
8 else
9 c> ← c> + 1 ;

10 end
11 end
12 swap(A[1], A[c<]);

Figure 3: The first step in our new PARTITION function

At the end of the above step, we claim that pivot is now at it correct place. However, we have still
not partitioned the array. To do it, we have to go over the left array of the pivot and check if it contains
any element greater than pivot. If yes, we have to move it to the array to the right of pivot. However, it
means that we need to displace some element at the right. Since, we have only O(1) extra memory with us,
we cannot even store this out of place elements. So, it seems natural to displace that element on the right

3

of pivot whose value is less than pivot. Our algorithm will mimic the above idea: after executing the the
procedure in Figure 3, assume that we have place pivot at index j in the array A. Now, we maintain two
counters c1 which runs from 1 to j−1 and counter c2 which runs from j+1 to n. We will use the following
idea:

We will increment c1 only if A[c1] < pivot. Similarly, we will increment c2 only if A[c2] > pivot

Thus, we have the following algorithm:

1 c1 ← 1;
2 c2 ← j + 1;
3 while true do
4 while A[c1] < pivot and c1 ≤ j − 1 do
5 c1 ← c1 + 1;
6 end
7 while A[c2] > pivot and c2 ≤ n do
8 c2 ← c2 + 1;
9 end

10 if c1 = j or c2 = n+ 1 then
11 break;
12 end
13 else
14 swap(A[c1], A[c2]);
15 c1 ← c1 + 1;
16 c2 ← c2 + 1;
17 end
18 end

Figure 4: The last few steps in our new PARTITION function

We now prove the following important observation of the above second step of PARTITION.
Once can check that the running time of the second step of PARTITION also takes O(n) time. This is

due to the fact that counter c1 can only be incremented from 1 to j−1 and c2 can be incremented from j+1
to n.

We now prove the correctness of the above algorithm. To this end, we make the following important
observation on our new algorithm:

Observation 1.1. Whenever c1 is incremented, A[1 . . . c1] contains all the elements less than pivot. When
c2 is incremented, A[j + 1 . . . c2] contain all the elements greater than pivot.

If both the counters c1 and c2 move to j and n + 1 respectively, then by above observation, we would
have partitioned the array. The only problem is to show that c1 and c2 will always be incremented to their
respective ends. To this end, we prove the following important lemma:

Lemma 1.2. Before each iteration of the outer while loop in Figure 4, total number of elements greater than
pivot in A[1 . . . j − 1] = total number of elements less than pivot in A[j + 1 . . . n].

Proof. We will prove the above statement when we first enter the while loop. The statement follows for all
the other iteration of while loop, as in each iteration we swap an element greater than pivot from A[1 . . . j−1]
with an element less than pivot in A[j + 1 . . . n], thus maintaining the equality.

4

Consider the array A when it first enters the while loop. Since the first step PARTITION is already done
(in Figure 3), the pivot is at it correct final index j. Assume for contradiction that total number of elements
greater than pivot in A[1 . . . j− 1], say x > total number of elements less than pivot in A[j+1 . . . n], say y.
This implies that the total number of element less than pivot in A[1 . . . j − 1] = j − 1− x. This implies that
the total elements in A less than pivot = j − 1− x+ y < j − 1 (since x > y). However, this contradicts our
calculation of final position of pivot in Figure 3. This procedure calculated that the correct place for pivot is
j because there are j − 1 elements in A that are less than pivot. Thus, we arrive at a contradiction. Thus,
our assumption that x > y is not true.

Similarly, we can prove that x cannot be less than y too.

Using Lemma 1.2 and Observation 1.1 and induction, we can show the following lemma:

Lemma 1.3. With only O(1) extra memeory, PARTITION partitions the array into three parts (1) all the
elements that are less than pivot. (2) pivot and (3) all elements greater than pivot.

In the above PARTITION algorithm, we make two pass over the array. First, to find the final place of the
pivot and second to find the left and right partition of pivot.

However, QUICKSORT is the best sorting algorithm because we can execute PARTITION in one pass
with O(1) extra memory.

2 PARTITION in one pass with O(1) memory

One has to observe that there is no need to waste the first pass to find the final place of pivot. So, we will
straight away go to the second step of PARTITION which partitions the left and right sub-array of pivot.
However, there is a problem with this approach – we don’t know where to start the second counter c2. So,
we will do the following hack: we will move the counter c2 from n decrementing it till a certain condition
is satisfied.

We will use the following idea:

We will increment c1 if A[c1] < pivot. Similarly, we will decrement c2 only if A[c2] > pivot. We will stop
when c1 crosses c2.

5

1 pivot← A[1];
2 c1 ← 2;
3 c2 ← n;
4 while true do
5 while A[c1] < pivot and c1 ≤ c2 do
6 c1 ← c1 + 1;
7 end
8 while A[c2] > pivot and c1 ≤ c2 do
9 c2 ← c2 − 1;

10 end
11 if c1 > c2 then
12 break;
13 end
14 else
15 swap(A[c1], A[c2]);
16 c1 ← c1 + 1;
17 c2 ← c2 − 1;
18 end
19 end
20 swap(A[1], A[c2]);

Figure 5: PARTITION that takes only one pass and take O(1) extra space.

We make the following observation about the above algorithm:

Observation 2.1. In the while loop, after c1 and c2 crosses all elements in A[2 . . . c2] are less than the pivot
and all the elements in A[c1 . . . n] are greater than pivot.

As the last step, we swap pivot (that is A[1]) with A[c2]. This will ensure that the pivot is at its correct
place. Using the above observation, all the elements to the left of the pivot, that is A[1 . . . c1− 1] have value
< pivot. Similarly, all the elements to the right of the pivot, that is A[c1 + 1 . . . n] have value > pivot.
Thus, we have partitioned the array into three parts.

6

