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In the last lecture, we saw that the worst case running time of any comparison based sorting algorithm
is n log n. So, can we come up with an algorithm which is not comparison based. In general then answer
is no. However we may be able to do something if the range of the input is known. Assume that you have
n where each number is in the range [1 . . . 999]. Note that n may be less than 1000. We give an O(n) time
algorithm to sort these numbers. To this end, we make a new auxiliary array B os size 1000. We can view
B to represent a set which can contain only elements from the range [1 . . . n]. Initially B[i] = 0 indicating
that i is not the part of the set. We now use the following algorithm:

1 make a new array B[1 . . . 999];
2 for i← 1 to n do
3 B[A[i]]← 1;
4 end
5 for i← 1 to 999 do
6 if B[i]← 1 then
7 print "i" ;
8 end
9 end

The first for loop takes O(n) time while the time taken by the second for loop is proportional to the size
of the array. One can check that the above algorithm sorts the array A. However, the running time of the
above algorithm is not O(n) because it is proportional to the size of B.

However, if we were to sort these digits just based on the most significant digit (assume that each number
is represented by three digit, so 0 = 000, 10 = 010 etc.), then this can be done by using an array B[0 . . . 9]
of size 10. When we see an element with most significant digit i, then we put it in cell i. However, this
presents us with a problem because the ith cell might already have some element. So, we keep a linked list
in each cell. When we want to add an element in cell i, we put it at the end of the linked list at cell i.
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1 make a new array B[0 . . . 9];
2 for i← 1 to n do
3 if the jth digit of A[i] is k then
4 Add A[i] to the linked list in cell k
5 end
6 end
7 Add the elements to A from left to right;
8 for i← 0 to 9 do
9 Add all the elements in the linked list in cell i to the start of the array A;

10 end

Figure 1: BUCKETSORT(A, j)

This algorithm is called BUCKETSORT and it just sorts A based on digit j. One can check that the time
taken by the above algorithm is O(n). We are now ready to use the above algorithm to sort an array A which
contains only integers from [1 . . . 999].

1 BUCKETSORT(A, d);
2 Assume that all the elements in A with elements i(0 ≤ i ≤ 9) are in the range ni to ni+1 − 1 such

that n0 = 1 and n10 − 1 = n;
3 for i← 0 to 9 do
4 RADIXSORT(A[ni . . . ni+1 − 1], d− 1);
5 end

Figure 2: RADIXSORT(A[1 . . . n], d)

The following observation is clear from the BUCKETSORT algorithm.

Observation 0.1. After BUCKETSORT(A, d), A contains numbers that are sorted based on the dth digit.

We now show that RADIXSORT will sort the array. Consider two number abc and def in array A. We
will now show the following lemma:

Lemma 0.2. After RADIXSORT completes, the final position of abc in A is smaller than the final position
of def , if abc < def .

Proof. There are three case:

1. a < d

In this case, the first iteration of RADIXSORT will call BUCKETSORT(A, 3) will put abc at a smaller
index than def . After this we partition the array based on their first digit and then call RADIXSORT on
each of these sub-arrays. Within these sub-arrays, the number can change their position but number
cannot be swapped across sub-arrays. This is due to the fact that all the numbers in the bucket i start
will digit i and these number can only lie in the array A from index ni to ni+1 − 1. Thus, in the
subsequent invocations of RADIXSORT, def will find its final place in [nd . . . nd+1 − 1] and abc will
find its final place in [na . . . na+1 − 1]. Since a < d, na+1 − 1 < nd. Thus, the final place of abc is
less than the final place of def .
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2. a = d and b < e.

In this case, in the first call to RADIXSORT(A[1 . . . n],3), both abc and def will be part of the same
bucket. However, in the second iteration, abc will be a part of the bth bucket and def will be the part
of the eth bucket. Since b < e, we claim that the position of abc is less than the position of def after
the second iteration. As in case (1), we can again show that the relative position of abc and def don’t
change after this.

3. a = d, b = e and c < f

Same as the case above.

Thus after RADIXSORT completes, each pair of elements in the array satisfy Lemma 0.2. We claim
that the array is sorted in the above lemma is true for all elements in the array. This can be proved using
induction and the reader is encouraged to do it.

We now move on to prove the running time of the above algorithm. Let T (n, d) be the running time of
RADIXSORT(A[1 . . . n], d). In this procedure, we partition the array into at most 9 sub-array and then call
radix sort on each of these sub-array. The time taken to partition is the the time taken by BUCKETSORT(A, d)
which is proportional to the size of the array, that is O(n). Also, we assume in procedure RADIXSORT that
numbers with the first digit i lie in [ni . . . ni+1 − 1] index of the array. Thus, we can calculate the running
time of RADIXSORT as follows:

T (n, d) =
∑9

i=0 T (ni+1 − ni, d− 1) + cn
T (n, 1) = cn

where the base case says that the time taken to sort n numbers with one digit is O(n). This can be done
by BUCKETSORT.

We now prove that T (n) ≤ cdn using induction

Lemma 0.3. T (n) ≤ cdn

Proof. We will prove by induction. For the base case, T (n, 1) is the time taken by BUCKETSORT to sort n
single digit numbers.

Assume that T (n, d − 1) ≤ c(d − 1)n. We will now prove that T (n, d) = cdn. We will use the
recurrence relation: T (n, d) =

∑9
i=0 T (ni+1− 1−ni, d− 1)+ cn. Using induction hypothesis. T (n, d) ≤∑9

i=0 c(ni+1 − ni)(d− 1) + cn = c(n10 − 1− n0)(d− 1) + cn. Since n10 − 1 = n and n0 = 1, we get:
T (n) ≤ c(n− 1)(d− 1) + cn ≤ cnd.

1 RADIXSORT from least significant bit to most significant bit

In the previous section, we saw an algorithm that sorts the input from most significant digit to the least
significant digit. In this section, we will see another algorithm that sorts from least significant digit to most
significant digit. This sorting is also the simplest – in terms of coding and analysis – and also beautiful in
my opinion.
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1 d← number of digits in the input;
2 foreach k ← 1 to d do
3 Sort A in a stable way looking at k-th digit only;
4 end

Figure 3: RADIXSORT(A[1 . . . n])

Few comments are in order: (1) This is not a recursive function. (2) The sorting has to be done in a
stable way. We next define stable sorting:

Definition 1.1. A sorting algorithm is called stable if two elements having the same value maintain their
relative order after the algorithm sorts the array. That is, if there exists two indices in the unsorted array, i
and j such that A[i] = A[j], then their final position in the sorted array i′ and j′ satisfy i′ < j′.

The reader can verify that INSERTION SORT, MERGESORT and BUCKETSORT (explained at the start
of this write-up) are stable sorting algorithm while HEAPSORT and QUICKSORT are not a stable sorting
algorithm. Let us see the run of our new RADIXSORT algorithm on the following input.

Figure 4: (i) The initial array. (ii) Array after stable sorting on MSD. (iii) Array after sorting on the middle digit. (iv)
The final sorted array.

We now show that the above algorithm correctly sorts the array:
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Lemma 1.2. After RADIXSORT completes, the final position of abc in A is smaller than the final position of
def , if abc < def .

Proof. Again there are three cases:

1. a < d

No matter what happens in the first two iteration of the algorithm, in the third iteration, we claim that
the final position of abc will be less than def . This is due to the fact that in the third iteration, we are
sorting based on the most significant digit and a < d.

2. a = d and b < e

No matter what happens in the first iteration, after the second iteration, we claim that position of abc
is less than the position of def . And in the third iteration, since our sorting is stable, our algorithm
will place abc at a smaller index than def (since at the start of the third iteration, the index of abc is
less than def and a = d).

3. a = d and b = e and c < f .

Similar to case (2).

Thus, using Lemma 1.2, we can again claim that the array is sorted after RADIXSORT ends. For calcu-
lating the running time, note that we can use sc BucketSort to sort the array based on k-th digit in the k-th
iteration. Since BUCKETSORT is a stable sorting algorithm and takes O(n) time, the total time taken by our
algorithm is O(nd) if each number has d digits.
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