
Sorting

Manoj Gupta

August 21, 2016

In algorithm design, after designing your algorithm, you have to show the following:

1. Show that your algorithm is correct.

2. Find its running time.

Till now, we have vaguely argued that our algorithm is correct. In this lecture, we will see how to
formally show that your algorithm is correct. Though there is no single method to prove that your algorithm
is correct, it is advisable to learn all the methods that are previously employed. In this context we will first
take a look at a very simple problem of finding the minimum. (See Figure 1)

1 min← A[1];
2 foreach i← 2 to n do
3 if A[i] < min then
4 min← A[i];
5 end
6 end

Figure 1: Finding the minimum

We all believe that this piece of code will find the minimum. But how do we prove such that there is no
doubt in the mind of the reader. To this end, we will try to find some property of this procedure which is
always true (in every iteration of the for loop). Such a property is called an Invariant as the property does
not vary as the algorithm proceeds. In this case, this invariant is called the loop invariant as the property
will hold for each iteration of this for loop. It is not hard to come up with a loop invariant:

Lemma 0.1. After the ith iteration of the for loop, min contains the minimum element if A[1 . . . i].

Proof. We will prove by induction. The base case is i = 1, that is before the start of the for loop. In this
case, we have set min← A[1]. So trivially, min is the minimum element of the array A[1 . . . 1] = A[1].

Induction hypothesis: We will assume that after iteration i− 1, min contains the minimum element of
the array A[1 . . . i− 1].

Induction Step: We will now prove that min contains the minimum element of the array A[1 . . . i] after
the ith iteration. Using induction hypothesis, we know that the min contains the minimum element of the
array A[1 . . . i− 1] after iteration i− 1. At iteration i, there are two possible cases:

1. min ≤ A[i]

This means that min is ≤ all the elements A[1 . . . i]. Since we don’t change the minimum if this
condition is true, min contains the minimum element of array a[1 . . . i] after the ith iteration.

1

2. min > A[i]

This means that A[i] is less than all the elements in A[1 . . . i − 1]. Since we change the minimum if
this condition is satisfied, min contains the minimum element of A[1 . . . i] after iteration i.

Thus, we see that under both the conditions, the statement of the lemma holds.

Even though the above example was simple, it shows some basic proof techniques:

1. Finding the loop invariant of your algorithm.

In fact, such a technique is not just limited to this particular example. Finding invariant is like finding
some basic feature of your algorithm. In my opinion, one needs to find such an invariant in any
algorithm.

2. Using Induction to prove it.

Having found a basic feature of your algorithm. we can now use various proof techniques to prove it.
Induction is one of such many techniques. Though there may be many ways to prove an invariant, in
this section we will see how induction has been put to use for a very large basic class of algorithms
called Sorting, which is defined as follows:

Question 1. Given an array of integers A[1 . . . n] of size n, design an algorithm which sorts this array in
ascending order.

A very simple way to sort integers is by handling elements one by one. So at the starts you have an array
of size 1. Note that array of size 1 is always sorted. Now, we add the second element of the array which may
lead to an unsorted array of size 2. To fix this issue, we check is A[2] < A[1] and if it is then we swap A[1]
and A[2]. This process can be naturally extended to the iteration i when the ith element is added to the array.
So after ith iteration, let us assume that the array A[1 . . . i − i] is sorted. The addition of A[i] may lead to
an unsorted array. To fix this issue, we again resort to comparing and swapping. However, this time we have
to find an index 1 ≤ j ≤ i such that all the elements below index j are less than A[i] and all the elements
above index j are greater than A[i]. It is as if we are inserting A[i] in its right position in the sorted array
A[1 . . . i− 1]. Such a sorting algorithm is called insertions sort which is coded in Figure 2.

1 foreach i← 2 to n do
2 foreach j ← i to 2 do
3 if A[j] < A[j − 1] then
4 swap(A[j], A[j − 1]);
5 end
6 else
7 break;
8 end
9 end

10 end

Figure 2: Insertion Sort

2

10 2 8 6 7 5

2 10 8 6 7 5

2 8 10 6 7 5

2 8 6 10 7 5

2 6 8 10 7 5

2 6 8 7 10 5

2 6 7 8 10 5

2 6 7 8 5 10

2 6 7 5 8 10

2 6 5 7 8 10

2 5 6 7 8 10
Figure 3: A run of Insertion Sort

The loop invariant for insertion sort is as follows

Lemma 0.2. After the ith iteration of Insertion sort, the array A[1 . . . i] is sorted.

The reader is encouraged to prove the above lemma (again using induction). We now try to find the
running time of Insertion sort. A careful reader might have realized that Insertion sort take O(n2) time in
the worst case. In fact, for the following array A = {n, n− 1, n− 2, . . . , 3, 2, 1}, insertion sort take O(n2)
time. Similarly, for array A = {1, 2, 3, . . . , n − 2, n − 1, n}, insertion Sort takes O(n) time. How does
then insertion sort perform in general. For this we find the average case running time(AVG) of our algorithm
which is defined as follows: assume that S denote the set of all the inputs to insertion sort.

AVG =

∑
S′∈S Time taken by Insertion Sort on S’

|S|

3

To complete the calculation, one needs to find the set of all the possible inputs to our algorithm. Consider
the following two different sequence {10 3 20 5} and {2345 100 6789 200}. One can check that the
execution of Insertion on both these sequences are same. In fact, the values of each element in the sequence
does not influence the running time of the algorithm, but the ordering of these elements matter. Thus both
these sequence are isomorphic to {3 1 4 2}. Hence, we will assume that the input sequence contains numbers
from 1 to n. So, the total number of different sequences on n numbers is n!. Thus, |S| = n!.

Consider any sequence S′ ∈ S. Let T2(S
′) be the time taken by Insertion sort in the second iteration

of the for loop (i = 2). Similarly, let Ti(S
′) be the time taken by Insertion sort in the ith iteration of

the for loop (where 2 ≤ i ≤ n). Thus, AVG =
∑

S′∈S

∑n
i=2 Ti(S

′)
n! . And, AVG =

∑n
i=2

∑
S′∈S Ti(S

′)
n! . Let

Ci =
∑

S′∈S Ti(S
′)

n! . Thus, AVG =
∑n

i=2Ci.
Note that Ci is the average time taken by the insertion sort in the ith iteration of the algorithm. At the

start of the ith iteration, by Lemma 0.2, A[1 . . . i− 1] is sorted. Thus, after element A[i] is inserted, A[i] can
be placed at i positions namely {1, 2, 3, . . . i}. For any 1 ≤ j ≤ i, if the final place of A[i] is j, the running
time at the ith iteration is O(j). Let Uj (1 ≤ j ≤ i) be the set of all sequences in S such that Insertion sort
takes O(j) in its ith iteration.

We now prove the following lemma:

Lemma 0.3. |Uj | = |Uk| for 1 ≤ j 6= k ≤ i.

Proof. We claim that |Uj | =
(
n
i

)
(i − 1)!(n − i)!. We first choose any i elements from n elements. Out

of these i elements, we first find an element aj which is the jth smallest among these i elements. aj will
be the ith element in sequences of Uj . The rest of the (i − 1) elements can be populated at any positions
from 1 to i − 1. The number of ways to do so is (i − 1)!. There are (n − i) elements left which can be
placed at index [i + 1 . . . n] in (n − i)! ways. Thus |Uj | =

(
n
i

)
(i − 1)!(n − i)! = n!/i and |Uj | = |Uk| for

1 ≤ j 6= k ≤ i.

From lemma 0.3, |Uj | = n!/i. Thus
∑i

j=1 |Uj | = n!. Ci now can be calculated as follows:

Ci =
∑i

j=1 |Uj |×j
n! , where j is the time required by insertion sort to process sequences in |Uj | at iteration

i. Using lemma 0.3, Ci = |U1|
∑i

j=1 j, since |U1| is equal to each other Uj . Thus, Ci =
n!
i
i(i+1)
2n! = i+1

2 .
Thus, AVG =

∑n
i=2Ci =

∑n
i=2

i+1
2 = O(n2).

Thus, we conclude that the average running time of Insertion sort is O(n2).

4

