
Asymptotic Running Time

Manoj Gupta

August 7, 2016

1 An Example

Consider the following program that finds minimum element in an arrayA[1 . . . n]. In this lecture note, we
will just concentrate on the running time of this program. In coming lectures, we will look at some strategies
to prove the correctness of the program.

1 min← A[1] ; // Time taken = c1
2 for i← 2 to n do //Time taken = c2(n− 1)
3 if A[i] < min then //Time taken = c3(n− 1)
4 min← A[i] ; // Time taken = c4(n− 1)
5 end
6 end
7 return min ; // Time taken = c5
8

Figure 1: FINDMIN(A[1 . . . n])

One can simply code the above procedure in his/her favorite language and run it on a machine to find its
running time. However, this running time not only depends on the machine but also the current load on the
machine. Therefore, we want to represent the running time in a way which is machine independent.

To this end, we will assume that each statement in the program can be executed in a finite or constant
time. So, assume that the running time of the first statement is c1. Similarly, we can give running time
of other statement of the procedure. One always needs to remember an important point while giving these
running times: we need to find the worst case running time of each statement.

For example, the execution of statement 4 in the above procedure depends on the truth value of if
condition. However, we can come up with the following array A = [n, n − 1, n − 2, . . . , 3, 2, 1] in which
the if condition always evaluates to true. So, this statement is executed exactly n− 1 times (and we assume
each such execution takes c4 time).

Hence, the running time of the above algorithm is c1 + (c2 + c3 + c4)(n − 1) + c5. To simplify the
calculation, assume that ci = c for all 1 ≤ i ≤ 5. So the running time is simplified to (3n− 1)c. There are
two components in the running time:

1. The first terms tell us how the running time increases as n increases.

2. The second term is machine dependent.

Since we wanted a running time which is machine independent, we will drop the term c and state that
the running time of the above algorithm is 3n− 1.



2 Comparing Running Time of two Algorithms

Consider two algorithm A and B for the same problem with running time f(n) = 2n2 + 5 and g(n) =
50n+ 5 respectively. Some elementary calculation suggests the following:

1. f(n) ≤ g(n) when n ≤ 25.

The ratio 1
c ≤

f(n)
g(n) ≤ 1 where c ≥ 0 is some constant.

2. f(n) > g(n) when n > 25.

The ratio g(n)
f(n) tends to 0 as n tends to infinity.

By Case(2), we conclude that for high value of n, g(n) is way lesser than f(n). However, by case (1),
for small value of n, g(n) is some constant factor away from f(n). This is depicted in the following plot.

n

Running Time

g(n) = 50n+ 5

f(n) = 2n2 + 5

25

Figure 2: Pictorial depiction of f(n) and g(n)

The following observations is of importance here:

Observation 2.1. In the ratio g(n)
f(n) , the constant factors and the lower order term does not matter. Only the

highest order term of f(n) and g(n) determines the fate of this ratio for high values of n.

We will now put the above observation to use and give the following abstract notion of asymptoctics.

Definition 2.2. Let f(n) and g(n) be two monotonically increasing function. Then f(n) is order of g(n) or
f(n) = O(g(n)) if there exists a constant c ≥ 0 such that for all n ≥ n0, f(n) ≤ c.g(n).

2



n

Running Time

f(n)

c.g(n)

n0

Figure 3: f(n) = O(g(n))

3



Some examples are in order.

1. 20n2 = O(n2)

f(n) = 20n2, g(n) = n2, c = 20 and n0 = 1.

2. 20n2 + 20n+ 20 = O(n2)

f(n) = 20n2 + 20n+ 20, g(n) = n2, c = 60 and n0 = 1.

3. n2 = O(n3).

One can show that n2 = O(n2). However, by definition, the above equality also holds.

4. 20 = O(1)

5. 50n log n 6= O(n)

A little trick that one can take from the above example is that if the highest order term of n in f(n) is
nk, then f(n) = O(nk).

3 Theory Vs Practice

Consider the following functions f(n) = 100n and g(n) = n log n. One can calculate that the ratio f(n)
g(n)

tends to 0 as n tends to infinity. So, f(n) beats g(n) for higher values of n. However one can do the exact
calculations as follows:

100n = n log n =⇒ log n = 100 =⇒ n = 2100

That is, f(n) beats g(n) when n > 2100. However, for all practical purposes, we can be sure that we will
never get an input of such size. One should always understand the perils of trying to develop highly complex
algorithms that have very high constants. Also, one should also understand the disadvantages of the big-O
notation. The big-O notation disregards constants and in the above example we see that this strategy might
not always be the best.

4


